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Abstract--Mohr circles for stretch can be used to find the spatial distribution of material lines which have been 
shortened, extended, shortened-then-extended and extended-then-shortened in a material plane which under- 
went area-constant homogeneous deformation by steady-state flow. The distribution is mainly a function of the 
vorticity of the parent flow, and can be used to determine sense of shear, finite strain, and even vortieity and 
orientation of finite strain axes. The method may be useful in theoretical and experimental studies and can help to 
understand the complex deformation patterns in sets of cross-cutting veins in deformed rocks. 

INTRODUCTION 

I~ MANY deformed terrains, sets of cross-cutting veins 
can be found which are boudinaged, folded, or folded 
and boudinaged in sequence. If the veins are all pre- 
kinematic, the specific type of deformation will depend 
on the orientation of the vein. Talbot (1970, 1987), 
Hutton (1982) and Passchier (1986) have demonstrated 
that such sets of veins provide important data from 
which at least finite strain and sense of shear can be 
determined. This is done using the geometric distri- 
bution of boundaries between sets of veins with a similar 
stretch history, i.e. without actually determining the 
stretch along the veins. In theory it is even possible to 
obtain data on the actual flow vorticity and on area 
change in the plane of observation. Similar techniques 
could be applied in general to any set of deformed 
material lines. However, calculation of the possible 
arrangements of the boundaries is a relatively cumber- 
some procedure. In this paper, a simple construction 
method is presented which uses Mohr circles for stretch 
to predict the geometry of sectors of material lines with a 
similar stretch history on any plane in a deformed 
material. The construction method only applies to 
constant-area deformation produced by steady state 
flow and therefore mainly serves to illustrate the influ- 
ence of vorticity and finite strain on sets of differently 
orientated material lines or veins. The method can, 
however, be expanded to involve area change and other 
parameters associated with natural deformation (Pass- 
chief in preparation, Passchier & Talbot in prep- 
aration). 

MOHR CIRCLES FOR STRETCH 

Homogeneous finite deformation in a plane (Fig. lc) 
is fully described by the equations; 

x' = F .x  and x = H-x ' ,  

where x and x' are the Cartesian co-ordinates of material 
points in the undeformed and deformed state, respect- 
ively. F is the Lagrangian (material) tensor relating 
particle positions in the undeformed state to their pos- 
itions in the deformed state. H is the Eulerian (spatial) 
tensor relating particle positions in the deformed state to 
their positions in the undeformed state (Fig. lc). De 
Paor (1981) and Means (1982) introduced Mohr circles 
which can be used as a graphical expression of these 
tensors, as shown in Fig. 2(b) for F. Polar co-ordinates of 
each point on the circle represent the rotation and 
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Fig. 1. (a) Distribution of sectors of shortening (dark) and extending 
(light) material lines in homogeneous constant.area flow. Short arrows 
indicate axes of maximum and minimum instantaneous stretching rate. 
L-axes are lines of no instantaneous stretching rate. This is the 'eigen'- 
flow type which would lead to the finite deformation in (b) after some 
time. Material line pairs r,t and p,q  coincided with the L-axes at the 
start and the end of the deformation period, respectively, a and ~ are 
the angles over which t and • rotated, p,q, • and t separate sectors where 
material lines extended (e), shortened (s) or first shortened, then 
extended (se); (c) deformation of the set of material lines (p,q,r , t )  as 

described by tensors F and H. 
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Fig. 2. (a) F-Mohr circle (enlarged) for the first step of incremental 
deformation in response to the 'eigen'-flow type of Fig. l(a); material 
lines coinciding with the axes of maximum and minimum stretching 
rate (squares) plot on a horizontal fine through the circle center. Lines 
r and t plot normal to these lines in the Mohr circle; (b) F-Mohr circle 
for the finite deformation in Figs. l(b) & (c). Construction method to 

find p,q,r,t explained in text. 

stretch of a material line in response to the deformation 
(Means 1982); for example, fl and distance (Op) in Fig. 
2(b) represent the rotation and stretch of the material 
line p in Fig. l(c). The angle between material lines, as 
measured around the circle for F, is twice the angle 
measured in 'real' space in the deformed state. 

'EIGEN'-FLOW TYPE 

The tensors F and H describe finite deformation, i.e. 
the displacement of material points or lines between an 
original and final configuration. As such, they do not 
contain any information on deformation history; a finite 
deformation state can be formed by an unlimited num- 
ber of flow (or instantaneous deformation) regimes and 
deformation paths. Nevertheless, each finite defor- 
mation state can be linked to one unique flow type by 
which it would form in the case of steady state flow, i.e. if 
flow parameters did not change in magnitude in the 
course of progressive deformation. This can be defined 
as the 'eigen'-flow type of that finite deformation state. 
Although such a flow type did not necessarily contribute 
to the finite deformation state, it is nevertheless useful as 
a standard setting, against which more realistic situ- 
ations can be assessed. 

FLOW AND FINITE DEFORMATION 

If surface area is preserved, as for the flow type shown 
in Fig. l(a),  axes of maximum and minimum stretching 
rate (arrows) lie at 45* to orthogonal axes of no infinitesi- 
mal longitudinal strain (L-axes). L-axes are spatial lines 
which separate sectors of instantaneously shortening 
(dark) and instantaneously extending (light) material 
lines. During progressive deformation, material lines 
will continually'pass'  the L-axes of flow from the instan- 
taneous shortening to the instantaneous extension sec- 
tor (Fig. la),  resulting in two sectors where material 
lines have first been shortened, then extended (se; Fig. 
lb) or first extended, then shorted (es). Two additional 
sectors will develop where material lines have been 
shortened (s) or extended (e) only (Fig. lb). The pres- 

ence of se or es sectors depends on flow vorticity, as 
explained below. In Fig. l(b), the four sectors in the 
finite deformation state are separated by four material 
lines, which coincided with L-axes of flow at the onset of 
deformation (r and t), or at the very end of the defor- 
mation period (p and q). 

CONSTRUCTION METHOD 

It is possible to use a simple geometric construction 
method in a Mohr circle for F or H to find the distri- 
bution of the s, e, se andes sectors of material lines in any 
finite deformation state resulting from steady state 
'eigen'-flow fixed in an external reference frame. The 
discussion is restricted to a circle for F, but construction 
in a circle for H is analogous. 

The angle measured around the Mohr circle for F 
equals the angle between material lines in the unde- 
formed state (Means 1982). For the first incremental 
deformation step, the angle over which these material 
lines rotated was infinitesimally small. Now consider an 
F-Mohr circle for this first deformation increment (Fig. 
2a); material lines which coincided with axes of maxi- 
mum and minimum stretching rate at the onset of 
deformation will have undergone maximum and mini- 
mum stretch values, i.e. they plot on the Mohr circle 
nearest to and furthest from the origin of the reference 
frame. Since rotations are infinitesimal, the lines lie on a 
horizontal line through the center of the Mohr circle 
(Fig. 2a; squares). The material lines which coincided 
with L-axes for the first incremental deformation step (r 
and t) lie at 45 ° to axes of maximum and minimum 
stretching rate in real space, so they plot on a vertical 
axis through the circle center. These points will lie in the 
same positions on P-Mohr circles for finite deformation 
(Fig. 2b) (Means 1982, Passchier 1988b). It is now easy 
to prove on geometric grounds that material lines p and 
q in Fig. 1 coincide with the intersection of the Mohr 
circle and the tie lines from r and t to the origin of the 
diagram in Fig. 2(b). a and 13 are the angles over which q 
and t, and p and r, respectively, rotated in the external 
reference frame due to finite deformation. In a Mohr 
circle for F, y and 6 are, respectively, the angles between 
t and q, and between r and p in the undeformed state 
(Means 1982). Since r -p - t  and t--q-r are right angles, d = 

and y = a. This means that p and q rotate exactly in 
such a way, that in the deformed state they occupy the 
positions which r and t occupied in the undeformed state 
(Fig. lc). Points p, q, r and t in Fig. 2(b) therefore 
correctly represent the material lines p,  q, r and t in Figs. 
l(b) & (~), which separate sectors of material lines with 
similar stretch history. 

THE EFFECT OF VORTICITY 

Passchier (1988b) has shown that in the Mohr circle 
for stretch, the elevation of the circle center above the 
horizontal axis, divided by the circle radius is a measure 
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for the vorticity of the 'eigen'-flow for that finite defor- 
mation state. This ratio is known as the kinematic 
vorticity number W k  (Means et al. 1980). W k  = 0 

corresponds to pure shear (coaxial) flow; W k  =- 1 to 
simple shear flow, W k  > 1 to a rotational simple shear 
(Passchier 1986, 1988a,b). In Fig. 3, four finite defor- 
mation situations are illustrated by F-Mohr circles for 
different vorticity numbers of 'eigen'-flow. Using the 
construction described above to find the distribution of 
material line sectors, it is clear that W k  has a profound 
influence on the geometry of this distribution. The 
following conclusions can now be drawn; 

(1) for pure shear progressive deformation ( W k  = O) 

se sectors are always of equal size; 
(2) for simple shear progressive deformation ( W k  = 

1), only one se sector exists. The line separating s and e 
sectors is the flow plane of simple shear; 

(3) if0 < W k  < 1, the resulting deformation has two se 
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Fig. 3. F-Mohr circles for four different vorticity numbers of 'eigen'- 
flow. Tie lines have been drawn to find distribution of e, s, se and es 

sectors in each case. Explanation in text. 

sectors of different size. Their arrangement is dependent 
on sense of shear; 

(4) if W k  > 1, one se and one es sector exist; 
(5) the relative size ore, s, se and es sectors depends on 

the vorticity of the characteristic flow, while absolute 
magnitudes are a function of finite strain as well. 

APPLICATION 

The construction method described here can be useful 
in a wide range of situations. It can be used in teaching. 
It is directly applicable to 'two-dimensional' defor- 
mation experiments in shear boxes and in transparent 
deformation cells such as those used to study rock 
analogues; and it may be used to calculate deformation 
and 'eigen'-flow parameters from the orientation of 
material line sectors. If the lines p, q, r and t can be found 
in a deformed material, the Mohr circle for H can be 
constructed and deformation parameters such as Rf, W k  

of the 'eigen'-flow type, and the orientation of finite 
strain axes can be read from the circle. This may eventu- 
ally even be applied to vein sets in naturally deformed 
rocks, provided that a correction can be made for area 
change, and for the fact that sectors of folded and 
boudinaged veins will not coincide precisely with s and e 
sectors due to layer-parallel shortening and extension 
(Passchier in preparation, Passchier & Talbot in prep- 
aration). 
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